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Abstract
We examine the nature and the dispersion of new polariton modes, which appear in the
polariton gap (i.e. within the Rabi splitting), considering the spectrum of polaritons in a planar
microcavity uniformly filled with a resonant material and exhibiting the strong exciton–photon
coupling regime. These additional modes are the consequence of the quantization of the
excitonic states caused by the confinement. We consider these in-gap modes in materials
typically used in microcavities and link the obtained results to experiments, where such in-gap
states have indeed been observed. We show that the splitting between the in-gap modes and
their bandwidth depend on the bandwidth of the exciton out of the microcavity and on the
oscillator strength of the excitonic transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Planar semiconductor microcavities are known to enhance and
control the interaction between light and electronic excitations
in solids [1]. If the empty cavity mode is in resonance
with the excitonic transition of the material placed in the
microcavity and the exciton–photon coupling is strong enough
in comparison with the losses, the eigenstates of such a system
are mixed exciton–photon states called cavity polaritons. Such
a situation is known as the strong coupling regime. The
formation of polaritons is manifested near the resonance
between the uncoupled exciton and the cavity photon by the
opening of a gap in the excitation spectrum (the so-called
vacuum Rabi splitting).

During the last decade much attention has been devoted to
the study of microcavities filled by an organic material, which
acts as a resonant medium. The interest is motivated by the
considerably larger Rabi splitting energies and the stability of
polaritons at room temperature. A variety of filling materials,
from amorphous disordered J aggregates of cyanine dyes [2] to
single crystals of anthracene [3, 4] are available at the moment.
Also, organic microcavities have the advantage of a larger
active thickness, as the whole volume of the cavity is filled by
a resonant material. As a reminder, in most inorganic samples,
a thin quantum well with a Wannier–Mott exciton is placed in
the middle of the microcavity; the quantum well confinement
increases the exciton oscillator strength, but the price to pay is
a smaller exciton–photon real space overlap.

The finite cavity width leads to the quantization of the
empty cavity modes in the growth direction (z-axis), so that
the eigenstates form a set of modes characterized by different
kz . The thickness of the cavity, L ∼ 1000 Å, is chosen
in such a way that the lowest cavity mode is tuned to a
resonance with the exciton energy h̄ωT ∼ 2 eV. In the
approximation of ideal mirrors, kz = km = πm/L. The
higher-m empty cavity modes are separated by an energy
h̄cπ/L

√
εc ∼ 2 eV from the resonance region. As the

typical Rabi splitting energies range from a few to tens of
meV for semiconductor microcavities, and from tens to several
hundreds of meV for organic microcavities, these higher-
energy modes are customarily excluded from consideration,
and the problem reduces to the interaction between the exciton
and the photon mode with the smallest possible value of
kz (m = 1).

However, the neglect of higher-m modes is substantiated
only in the case of usual inorganic microcavities, and can
fail when dealing with a microcavity uniformly filled with a
resonant material. In this latter case, the excitonic component
is also quantized in z-direction. Below we show that, while the
empty cavity modes with higher m are well separated from the
resonance region, the excitonic states with higher m typically
still have energies around h̄ωT. The interaction between the
excitons and photons with m > 1 is non-resonant, and thus
the account of the retardation effects for these m can lead only
to small (in comparison with the Rabi splitting) shifts of bare
exciton states. However a small admixture of light acquired
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by these states via a non-resonant interaction with the empty
cavity modes with the same kz can assist their emission from
the polariton gap.

In this paper we show that there can be two different
mechanisms of formation of these states. The first is applicable
to materials with a small effective mass of excitons. An
example is an inorganic semiconductor, such as GaAs. In
such a material the confinement leads to the formation of a
set of bare exciton subbands, each subband characterized by a
different kz . The account of retardation results in small shifts
of these subbands. The second mechanism works in materials
with a weak intermolecular interaction, where the exciton
bandwidth is small. An example is a molecular crystal, such as
anthracene. As a limiting case let us consider a material with
such a narrow exciton band that one can completely neglect
intermolecular interaction. Then qualitatively we can describe
the situation as follows. Different higher-m empty cavity
modes interact with one and the same electronic transition
ωT. Each empty cavity mode induces an excitonic polarization
with the same m in the resonant material. The interaction
between the empty cavity mode and the induced polarization
with the same m leads to an m-dependent shift of the resulting
polaritonic states from ωT. The dependence of the shift on m
appears because the strength of the interaction depends on the
energy separation between the empty cavity mode and ωT, and
thus decreases with the growth of m. Thus, both mechanisms
result in the appearance of low-energy exciton-like polaritonic
bands ωL(m; k), but in the first case the light–matter interaction
results in further shifts of originally resolved excitonic bands,
while in the second case the bands get resolved due to the
retardation effects only. The in-gap polaritons formed by the
first mechanism have been observed many years ago in a GaAs
microcavity of an unusual inorganic microcavity structure
(instead of a quantum well in the middle, all the space between
the mirrors was continuously filled by GaAs) [5]. The in-
gap polaritons formed by the second mechanism have been
observed very recently in a microcavity filled by a monocrystal
of anthracene [4].

These in-gap states were overlooked in most previous
discussions and for this reason their nature has never been
properly discussed. These states are particularly important for
organic microcavities, as in these nanostructures typically all
the space between the mirrors is filled by a resonant material.
Even if these states are not directly visible in the gap (for
instance, if they are situated within the absorption band), they
are present as dark states and can play an important role in the
relaxation processes.

The majority of organic structures are optically anisotropic.
Many of them (such as anthracene) have a layered structure
and in a good approximation can be characterized by a diago-
nal dielectric tensor. For this reason in this paper we derive the
dispersion equation for in-gap polaritons in a microcavity uni-
formly filled by a crystal with a diagonal dielectric tensor. This
approximation will allow us to discuss the most typical partic-
ular cases of resonant materials used in microcavities, such as
a cubic semiconductor crystal with a Wannier–Mott exciton, as
well as J aggregates and anthracene-type monocrystals with
Frenkel excitons.

2. Cavity polaritons in a medium with a diagonal
dielectric tensor

Let us consider a microcavity of thickness L uniformly filled
by a material with excitonic resonances. The presence of the
resonances will be taken into account in the components of the
dielectric tensor. In general (see [6], chapter IV),

εi j(ω, k, kz) = εcδi j − 8π

vh̄

∑

α

Pα
i Pα

j ωα(0)

ω2 − ω2
α(k, kz)

,

i = x, y, z, (1)

where the sum is taken over all the excitonic resonances,
ωα(k, kz) and P(α) are, respectively, the αth excitonic transition
energy and the exciton transition dipole moment, k is the in-
plane wavevector, v is the volume of the unit cell of the crystal,
and εc is the background dielectric constant. As any symmetric
tensor, the dielectric tensor can be reduced to a diagonal form.
In all cases considered below, due to the symmetry properties
of the crystal, in the coordinate system coinciding with the
principal axes of the dielectric tensor its components take the
following form [7]:

εii (ω, k, kz) = εc

(
1 − W 2

i

ω2 − ω2
i (k, kz)

)
, i = x, y, z,

(2)
where the constants W 2

i = 8π P2
i ωi/vh̄εc are proportional

to the oscillator strength of the excitonic transition. The
dependence of ωi (k, kz) on the wavevector corresponds to
the account of the spatial dispersion of the medium. The
anisotropy means that different components of the dielectric
tensor can be different.

Let us assume for simplicity that the microcavity has ideal
mirrors, so that the boundary condition is the vanishing of the
tangential component of the electric field at z = ±L/2. Then
the eigenmodes will be characterized by kz = km = mπ/L,
and the z-dependence of the modes will have an alternating
symmetry: the modes with odd (even) m will behave as
cos kmz (sin kmz). Solving the Maxwell equations with a
diagonal dielectric tensor with arbitrary diagonal elements
εxx(ω, k, kz), εyy(ω, k, kz) and εzz(ω, k, kz), we obtain the
following dispersion equation for the mth mode:
[(

ω2

c2
ε(m)

zz − k2

)
ε(m)

xx − k2
mε(m)

zz

] [
ω2

c2
ε(m)

yy − k2 − k2
m

]
cos2 ϕ

+
[(

ω2

c2
ε(m)

zz − k2

)
ε(m)

yy − k2
mε(m)

zz

]

×
[
ω2

c2
ε(m)

xx − k2 − k2
m

]
sin2 ϕ = 0, (3)

where ϕ is the angle between x-axis and the direction of the in-
plane wavevector k, and ε

(m)
ii = εii (ω, k, km). This dispersion

equation for m = 1 has been obtained in [8], where the details
of the derivation can be found, and the generalization on the
case of arbitrary m is straightforward. Below we examine
this dispersion equation for three particular symmetries of the
filling material.
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2.1. Cubic crystal

Let us consider as a first example a cubic crystal with
spatial dispersion. This model corresponds, for instance, to
a microcavity uniformly filled by an inorganic semiconductor,
such as the sample of [5]. As known, inorganic semiconductors
possess Wannier–Mott excitons with a large radius and wide
bands characterized by an effective mass, which can be an
order of magnitude smaller than the effective mass of a
Frenkel exciton in a molecular crystal. For a cubic crystal
εii(ω, k, kz = km) = ε(m)(ω, k) for all i . Then the dispersion
equation for transversal polaritons (3) reduces to the familiar
form:

ω2

c2
ε(m)(ω, k) = k2 + k2

m . (4)

Here ε(m) is given by equation (2) with ωi (k, kz = km) ≡
ωT(m; k). In the effective mass approximation ωT(m; k) =
ωT + (h̄/2M∗)[k2 + k2

m] (here M∗ is the exciton effective
mass). For m = 1 equation (4) describes conventional cavity
polaritons considered previously in many works. Larger values
of m on the right-hand side would require on the left-hand side
either larger values of ω (corresponding to higher-m empty
cavity modes with the energy separation about 2 eV), or larger
values of ε (higher-m bare exciton modes). Equation (4) can
be rewritten in a customary form

[ω2 − ω2
cav(m; k)][ω2 − ω2

T(m; k)] = ω2W 2, (5)

where the dispersion of the mth empty cavity photon
ωcav(m; k) = c

√
(k2 + k2

m)/εc and the dispersion of the mth
bare exciton ωT(m; k) = [ωT + h̄π2m2/2L2 M∗] + h̄k2/2M∗
are introduced. The modes ωT(m; k) have a parabolic
dispersion. The energy separation h̄π2m2/2L2 M∗ between
them is inversely proportional to the effective mass of the
exciton, so that it is clear that the splitting between these modes
is the result of the dependence of the exciton energy on the
wavevector. The separation grows quadratically in m. The
solutions of equation (5) for m > 1 are doublets with the upper
branch almost coinciding with ωcav(m; k) and with the lower
branch (the in-gap polaritons) with a dispersion given by

ωL(m > 1; k) = ωT(m; k) − W 2ωT(m; k)

2[ω2
cav(m; k) − ω2

T(m; k)] . (6)

The energies of the in-gap polaritons are sums of the
mth bare exciton dispersion ωT(m; k) and the polaritonic
correction, which vanishes with the growth of m. As expected,
the polaritonic correction also vanishes in the limit c → ∞
(because ωcav(m, k) ∝ c). The dispersion of these modes is
shown in figure 1 for the parameters of a GaAs microcavity:
εc = 9, h̄W = 3 meV, the detuning u = ωcav(m = 1, k =
0) − ωT = 0, M∗ = 0.3me (me is the electron mass).
Each mode is marked by its value of m. The exciton-like
polariton modes with almost parabolic dispersion are clearly
seen in the polariton gap. These are the modes observed in
the experiment [5] as extra emission peaks situated within the
polariton gap (the Rabi splitting) and correctly interpreted as
the result of quantization of the exciton center of mass motion.
The modes with m � 5 are resonant with the upper polariton
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m = 1
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8000020000 400000 10 6
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Figure 1. Dispersion of conventional cavity polaritons (m = 1, thick
lines) and the in-gap modes with m = 2–5 (thin lines) for a cubic
crystal. The parameters of GaAs are used for the plot (small effective
mass of the exciton, small oscillator strength of the exciton
transition).

band. They have a very small admixture of light and thus are
expected to be dark. We stress that here the large (as a fraction
of the Rabi splitting) separation between these modes is due to
the small effective mass of the Wannier–Mott exciton.

2.2. Uniaxial crystal

A uniaxial crystal is described by a dielectric tensor with the
components εxx = εyy ≡ ε‖. For example, a microcavity filled
with J aggregates with all the dipole transitions lying in the
microcavity plane [2] can be considered as a uniaxial crystal in
a zero-order approximation with respect to disorder. For this
choice of the components (3) splits into two equations:

ω2

c2
ε‖ = k2 + k2

m,
ω2

c2
= k2

εzz
+ k2

m

ε‖
, (7)

and the first (second) equation corresponds to the TE
(TM)-modes (the first and second modes are also known,
respectively, as ordinary and extraordinary waves). Having
in mind a microcavity filled by J aggregates of cyanine
dyes [2], we assume that ε‖(ω) has the form (2), but with the
resonance frequency ωT independent of the wavevector: the
mean distance between J aggregates is about 200 Å, and one
can consider them as non-interacting point dipoles. Then with
εzz = εc the dispersion equations (7) can be rewritten as

[ω2 − ω2
cav(m; k)][ω2 − ω2

T] = ω2W 2,

[ω2 − ω2
cav(m; k)][ω2 − ω2

T] = W 2

(
ω2 − c2k2

εc

)
.

(8)
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Figure 2. Dispersion of lower polaritons with m = 1 − 3 near the
resonance frequency for a uniaxial crystal with ωT = const and
moderate oscillator strength of the electronic transition (as for J
aggregates of cyanine dyes). TE (TM) modes are shown by solid
(dot- and-dash) lines. Inset: conventional cavity polaritons with
m = 1.

The solutions with m = 1 correspond to the conventional
polariton modes (shown in the inset of figure 2). For them a
slight difference in the dispersion of TE and TM modes appear
at larger k. Again, each of equations (8) with m > 1 has two
solutions, the upper branch almost coinciding with ωcav(m; k),
and the lower branch having the dispersion

ω
(TE)
L (m > 1; k) = ωT − W 2ωT

2[ω2
cav(m; k) − ω2

T] ,

ω
(TM)
L (m > 1; k) = ωT − W 2(ω2

T − c2k2/εc)

2ωT[ω2
cav(m; k) − ω2

T] ,
(9)

which is a sum of the electronic transition frequency of J
aggregates (dispersionless and the same for all m, as ωT does
not depend on the wavevector) and a polaritonic correction.
These modes are shown in figure 2 for m = 2, 3 and
the parameters corresponding to a microcavity filled by J
aggregates of cyanine dyes: the Rabi splitting h̄W = 80 meV,
εc = 3 and with the detuning h̄u = −100 meV. The figure
shows the zoom of the region around ωT. The continuous
(dot- and-dash) lines denote TE- (TM-) polarized modes, the
horizontal dashed line denotes the resonance energy h̄ωT. The
vertical dashed line marks the wavevector kT = ωT

√
εc/c at

which all the TM modes intersect (see (9)). The appearance of
this intersection can be understood by taking into account the
relation between the in-plane and the normal component of the
electric field in the TM mode

El(z) = iεc

kε‖(ω)

∂ Ez(z)

∂z
, (10)

which can be found from the Maxwell equations (see [8]). This
relation is true for all m. From this relation it is clear that
at ω = ωT, where ε‖(ω) → ∞, the in-plane (longitudinal)

component of the electric field vanishes, and the total electric
field is directed normally to the mirrors. This field does not
interact with the excitonic transition, which is polarized in the
microcavity plane, and the polaritonic correction vanishes for
any m.

To summarize, in the case considered here with ωT =
const the separation between the modes (9) appears only as a
result of a non-resonant interaction between the higher-energy
empty cavity modes and the electronic transition at ωT. The
closeness of the modes with m > 1 to ωT and to each other
(the maximal separation is less than 1 meV) is a result of the
relatively weak oscillator strength of the electronic transition in
J aggregates: as follows from (9), this separation is ∼W 2/ωT.
It means that for J aggregates the wavevector dependence
of the energy of these in-gap polaritons cannot be directly
observed: indeed, these states are exciton-like and thus should
have an inhomogeneous linewidth ∼50 meV. As we show in
the next section, larger values of W also lead to formation of
well-resolved bands in the case ωT = const.

2.3. Biaxial crystal

Let us consider a microcavity filled by a monocrystal of a
linear polyacene, such as anthracene, naphthalene, tetracene
or pentacene. As known, due to the resonant intermolecular
Coulomb interaction, the excitonic band is split into as many
Davydov components as there are inequivalent molecules in
the unit cell. The unit cells of these crystals contain two
molecules with the same excitation energy but with two
differently oriented transition dipole moments, p1 and p2. Then
due to intermolecular interaction two excitonic bands appear,
and the dipole moments of the components of the doublet for
small wavevectors are: Pb = p1 + p2, Pa = p1 − p2, with
Pb ⊥ Pa [9]. Choosing the axis x and y along Pb and Pa ,
one can write the dielectric tensor of such a crystal in the
form [7]

εxx = εc

[
1 − W 2

b

ω2 − ω2
b

]
, εyy = εc

[
1 − W 2

a

ω2 − ω2
a

]
,

εzz = εc,

(11)
where ωa,b are the energies of the components of the Davydov
doublet (which can be considered either as dispersionless or
as wavevector dependent). Here we again neglect the small
off-diagonal terms εxz and εzx , which exist in anthracene.
Substituting (11) into (3) one can show that the dispersion
equation can be written as

[ω2 − ω2
La(m; k)][ω2 − ω2

Ua(m; k)][ω2 − ω2
Lb(m; k)]

× [ω2 − ω2
Ub(m; k)] = W 2

a W 2
b

c4k2
xk2

y

ε2
c

, (12)

4
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where

ω2
La,Ua(m; k) = 1

2

{
ω2

cav(m; k) + ω2
a + W 2

a ∓
√

(ω2
cav(m; k) − ω2

a − W 2
a )2 + 4W 2

a

(
ω2

cav(m; k) − c2k2
y

εc

)}
,

ω2
Lb,Ub(m; k) = 1

2

{
ω2

cav(m; k) + ω2
b + W 2

b ∓
√

(ω2
cav(m; k) − ω2

b − W 2
b )2 + 4W 2

b

(
ω2

cav(m; k) − c2k2
x

εc

)}
.

(13)

As the crystal is optically anisotropic in the cavity plane,
the eigenmodes cannot be classified as purely TE- or TM-
polarized modes (except for the waves propagating along the
optical axes of the crystal). In equation (12) the eigenmodes
are represented as two doublets of polaritons, each doublet
attributed to either the a or b exciton, and the right-hand side
(vanishing along the optical axes of the crystal) determines
the mixing between these modes. The dispersion of cavity
polaritons in a crystal with two molecules in a unit cell was
studied theoretically for the first time in [8], but in this work
higher-m modes were not discussed. It has been shown that
in spite of the strong optical anisotropy of the crystal, the
spectra of cavity polaritons are isotropic at small wavevectors
and a weak anisotropy only appears at larger k. This is a
combined effect of the special arrangements of the fields in
the modes and of the reduced dimensionality of the problem.
First, the electric field in the microcavity is such a combination
of TE- and TM-polarized empty cavity photons that the total
electric field in a polariton mode is parallel to the excitonic
transition dipole moment for each given k, and this removes
the dependence of the Rabi splitting energy on the direction
of k. Second, the non-analytical dependence of the exciton
energy on its wavevector existing in bulk anisotropic crystals
at vanishing k [9] does not appear, as in two dimensions the
dipole sums converge at small k. The complete discussion of
this weakening of the anisotropy of the spectra can be found
in [8]. So here we do not fix our attention on the examination
of the angle dependence of the energy of the modes, and give
just several examples with the focus made on the modes with
higher values of m. The dispersion of these modes can be
found from (12). For each m there are two upper modes
with their energies almost coinciding with ωcav(m; k) and with
mutually perpendicular polarizations, and two lower modes
with mutually perpendicular polarizations, one lower mode
attributed to a-exciton, the other to b-exciton. These lower
modes have the following dispersion equation:

ωA(m, k) = ωa − W 2
a A(ω, k)

2ωa[ω2
cav(m, k) − ω2

a]
,

ωB(m, k) = ωb − W 2
b B(ω, k)

2ωb[ω2
cav(m, k) − ω2

b]
,

(14)

where the second terms again describe the non-resonant

polaritonic effect, and

A(ω, k) =
(

ω2
a − c2k2

y

εc

)
− W 2

b k2
xk2

yc4/ε2
c

(ω2
a − ω2

b)[ω2
cav(m, k) − ω2

b]
,

B(ω, k) =
(

ω2
b − c2k2

x

εc

)
+ W 2

a k2
xk2

yc4/ε2
c

(ω2
a − ω2

b)[ω2
cav(m, k) − ω2

a]
.

(15)
Experimental studies of microcavities with an organic

crystalline material are in an initial stage [3, 4]. In particular,
in [4] multiple polariton modes situated close to the resonance
frequencies have indeed been observed and were interpreted as
higher-m modes. We believe that these modes are exactly the
ones which we consider here.

In figure 3(a) we show for reference the polariton modes
with m = 1 for ϕ = 0 (ϕ is the angle between x-axis and the
direction of the wavevector k). The modes with polarization
along Pb (Pa) are shown as solid (dash- and-dot) lines. The
detuning is chosen large and negative: h̄u = −300 meV.
The two excitonic resonances and the empty cavity modes are
shown as thin dashed lines. We use the following numbers
taken from [4]: ωb = 3122 meV, ωa = 3154 meV, h̄Wb =
570 meV, h̄Wa = 355 meV, εc = 3. These values of W provide
the measured values for the LT-splitting 51 and 19 meV.3 In
figures 3(b)–(d) we show the zoom of the resonance region
with the modes with m = 1, 2, 3 for the angles ϕ = 0◦, 45◦ and
90◦. Each mode is marked with its value of m. The continuous
(dot- and-dash) lines denote ωB(m, k) (ωA(m, k)) (14), the
horizontal dashed lines denote the resonance energies h̄ωa and
h̄ωb. The modes ωA(m; k) and ωB(m; k) are perpendicularly
polarized and demonstrate the behavior similar to the case of
a uniaxial crystal: indeed, for the angles ϕ = 0◦ and 90◦
the modes split into TE- and TM-polarized waves. Then for
ϕ = 0 (figure 3(b)) the modes interacting with the a-exciton
are TE-polarized, and the modes interacting with the b-exciton
are TM-polarized. Correspondingly, ωB(m, k) demonstrate the
intercrossing at ω = ωb, k = ωb

√
εc/c, and ωA(m, k) form

a set of modes converging to ωa from below. For ϕ = 90◦
(figure 3(d)), in contrast, the modes interacting with the a-
exciton are TM-polarized, and the modes interacting with the
b-exciton are TE-polarized, and this correspondingly changes
the behavior of the modes (the modes ωA(m, k) demonstrate
the intercrossing, and the modes ωB(m, k) converge to ωb from
below). In figure 3(c) (ϕ = 45◦) the situation is intermediate,
as in this case there are no purely TE- or TM-polarized modes.
The modes merge to the frequencies of the excitonic resonance
with the growth of m, as is typical for materials with narrow
bare exciton bands (i.e. with weak spatial dispersion).

From the figures one can see that the polaritonic modes
with m = 2 form wide (∼40 meV) bands in the gap. We

3 The magnitudes h̄W for the model of ideal mirrors are equal to the Rabi
splitting energies for the modes with m = 1. The values which we use (the
ones deduced from the LT-splitting) exceed the Rabi splittings measured in
the experiment (h̄	b = 340 meV and h̄	a = 200 meV) by a factor ∼1.7.
We believe that this discrepancy between the experimental numbers originates
from the fact that in the experiment the DBRs are used as mirrors, and the
overlap between the electric field and the exciton is not complete. Thus we use
the LT-splitting as a reference parameter, as it does not depend on the properties
of the mirrors, but on the material only.
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Figure 3. Dispersion of cavity polaritons in a crystal of anthracene (ωT = const, large oscillator strength of the exciton transition).
b-exciton-like (a-exciton-like) modes are shown by solid (dot- and-dash) lines. (a) Conventional cavity polaritons (m = 1); (b)–(d) in-gap
modes with m = 2, 3 for different angles between k and the x-axis.

checked that, as expected, the account of the dependences of
ωa and ωb on the wavevector does not influence the figures
due to the largeness of the Frenkel exciton effective mass
(M∗ = 5me has been taken for the check). Clearly, in this case
the splitting between the in-gap polaritons and the large width
of their bands is a result of a large oscillator strength of the
electronic transition only (see (14)). Thus one can expect that
materials with either large oscillator strength or with a strong
dependence of the resonance frequency on the wavevector are
more suitable for the appearance and observation of the in-gap
modes.

3. Conclusions

We have discussed theoretically the dispersion of in-gap
polaritons, which appear in the strong coupling regime in
microcavities uniformly filled by a resonant material. These
modes appear within the Rabi splitting gap (or in some cases
can be resonant with the upper polariton branch) and represent

exciton-like polaritonic states with a small admixture of light
(the higher m, the smaller the admixture). The modes with
smaller m can be bright and have been already observed in
experiments. The higher m, the smaller is the mean excitonic
polarization (as m determines the number of oscillations along
the z-axis). Consequently, states with higher m have a lower
radiation rate.

The energy of the in-gap modes is a sum of two terms, the
first is the bare exciton energy, the second is the polaritonic
(retardation) correction. Both these terms can contribute to
the separation between modes with different m. The first
term contributes if the dependence of the exciton energy
on the wavevector is strong (the separation ∼h̄k2

m/2M∗).
The second term contributes if the oscillator strength of the
excitonic transition is large (the separation ∼W 2/ωcav(m; k)).
Depending on the ratio between M∗ and W , these two
contributions may be of the same order, or one of them may
dominate. In the examples considered the first term was
dominant in the GaAs microcavity, and the second term was
dominant in anthracene.
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The in-gap modes considered are a common feature of all
the microcavities exhibiting a strong coupling regime provided
that the resonant material is wide enough so that an excitonic
polarization with different z-symmetry can develop. As they
appear as a result of quantization of the excitonic states caused
by the confinement, they should be taken into account for
any macroscopic width of the layer of the resonant material
(i.e. also when a macroscopic layer fills the microcavity only
partially). In conventional inorganic microcavities, however,
the quantum well is thinner than the Wannier–Mott exciton
Bohr radius. Its width is small in comparison with L and the
quantization in the z-direction analogous to the one considered
here does not arise. In contrast, in organic microcavities,
where a resonant material with a large oscillator strength
conventionally fills all the space between the mirrors, these
modes should not be overlooked. As these modes are located
in the middle of the gap or are in resonance with the upper
polariton, they may play an important role in the energy
relaxation processes.

Finally, we note that in this paper only idealized disorder-
free crystals are considered. Organic crystals in reality contain
a certain amount of disorder, and the amorphous structures
(such as J aggregate based microcavities) are disordered by
their nature. As took place in many experiments, we assumed
that polaritons with m = 1 are in the strong coupling regime
with a substantial Rabi splitting (for polaritons with m > 1
the discussion in terms of strong or weak coupling is not
appropriate, as the interaction is non-resonant). The disorder
may alter the picture presented in this paper in the following
way. As the in-gap polariton modes have small group velocities
(their dispersion is flat), disorder can result in the appearance of
coexisting localized and delocalized states [10]. The presence

of disorder can lead also to the mixing of modes with different
m: if the disorder-induced broadening of the in-gap modes
exceeds the splitting between them, they cannot be resolved
and can manifest themselves only as an incoherent emission
from the gap. Effects related to disorder are beyond the scope
of this paper and require further consideration.
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